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Integral inequalities for algebraic polynomials 

Gradimir V. Milovanovic 

Abstract 

In this paper we consider two extremal problems for algebraic polynomials 
in L 2 metrics. 

(1) Let Pn be the class of all algebraic polynomials P(x) = akxk 

of degree at most nand IJPllda- = (fIR IP(x)1 2 da(x))1/2, where da(x) is a 
nonnegative measure on lit We determine the best constant in the inequality 
lakl:::; Cn,k(da)IJPl!da-, for k = O,l, ... ,n, when P E Pn and such that 

= 0, k = 1, ... ,m. The cases Cn,n(da) and Cn,n-l(da) were studied 
by Milovanovic and Guessab [5], and only for the Legendre measure by Tariq 
[9]. 

(2) Let PN be the set of all monic algebraic polynomials of degree N 
and 10 8 be Mth roots of unity, i.e., lOs = exp(i27rs/M), s = 0,1, ... , M - 1. 

Polynomials orthogonal on the radial rays in the complex plane with respect 
to the inner product 

have been introduced and studied recently in [3]. Here, w is a weight function 
and 0 < a :::; +00. We consider the extremal problem 

inf l a 
dx, 

PEPN 0 8=0 

as well as some inequalities for coefficients of polynomials under some re-
strictions of the polynomial class. 

1. Introduction 

n 
Let Pn be the class of algebraic polynomials P(x) = L akxk of degree at most 

k=O 
n. The first inequality of the form laki :::; en,kllPll was given by V.A. Markov [2]. 
Namely, if 

IlPlt = IIPlloo = max IP(x)1 
xE[-I,I} 
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n 

and Tn(x) = L tn,vxv denotes the n-th Chebyshev polynomial of the first kind, 
v=o 

Markov proved that 

Precisely, 

where 

Dn,k = 

if n - k is even, 
if n - k is odd. 

! 

n if n - k is even, 
(n2k) ! 

(n - 1) if n - k is odd. 
( n-;-l )! 

For k = n (1.1) reduces to the well-known Chebyshev inequality 

lanl :s:: 2

n

-

1

11P1Ioo. 

(1.1 ) 

(1.2) 

Using a restriction on the polynomial class, inequality (1.1) could be im-
proved. For example, taking P(I) = 0 or P( -1) = 0, Schur [8] found the following 
improvement of (1.2) 

lanl :s:: 2

n

-

1 

( cos 4:) 2nllPlloo. 

This result was extended later by Rahman and Schmeisser [7] for polynomials with 
real coefficients, which have at most n - 1 distinct zeros in (-1, 1). 

Our interest are the corresponding inequalities in L2 norm. Such one result 
was obtained by Labelle [1] 

1·3·5··· (2k - 1) ( 1) 1/2 ([(n - k)/2] + k + 1/2) 
lakl :s:: k! k + '2 [(n _ k)/2] IIPI12, 

(1.3) 

where P E P

n

, 0 :s:: k :s:: n, 

( 
1 ) 1/2 

IIPII = IIPI12 = 11 IP(x)1

2 

dx , 

and the symbol [x] denotes the integral part of x. Equality in this case is attained 
only for the constant multiplies of the polynomial 

[(n-k)/2] (k + // - 1/2) 
(-It(4// + 2k + 1) // Pk+2v(X), 

where Pm(x) denotes the Legendre polynomial of degree m. 
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This result was improved by Tariq [9]. Under restriction P(l) = 0, he proved 

that 

(1.4) 

with equality case 

1 n-1 

P(x) = Pn(x) - 2" 2)2v + l)Pv(x). 

n 

v=o 

In comparing with (1.4), we note that in inequality (1.3) for k = n the factor 

n/(n + 1) does not exist. Tariq also obtained that 

(1.5) 

with equality case 

2n + 1 1 n-2 

P(x) = -2-Pn(X) - P

n

- 1 (x) + -2- 2)2v + l)Pv(x). 

n +2 n +2 

v=o 

In the absence of the hypothesis P(l) = 0 the factor (n2 + 2) 1/2 / (n + 1) appearing 

on the right-hand side of (1.5) is to be dropped. 

Recently, Milovanovic and Guessab [5] have extended this result to polyno-

mials with real coefficients, which have m zeros on real line. 

In this paper we consider more general problem including L2 norm of poly-

nomials with respect to a nonnegative measure on the real line lit and we give 

estimates for all coefficients. Also, we consider extremal problems for polynomials 

with respect to an inner product defined on the radial rays in the complex plane. 

Polynomials orthogonal with respect to such a product have been introduced and 

studied in [3]. 

2. Estimates for coefficients 

For (k E C, k = 1, ... ,m, we consider a restricted polynomial class 

(0 s:; m s:; n). 

In the case m = 0 this class of polynomials reduces to P
n

. If (1 = ... = (k = ( 

(1 s:; k s:; m) then the restriction on polynomials at the point x = ( becomes 

P(() = P'(() = ... = p(k-1)(() = o. 
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Let 

m II (x - = Xm - SlXm- 1 + ... + (_l)m-l 8m-IX + (-1)m8m 
i=l 

where 8k denotes elementary symmetric functions of 6, ... , i.e., 

Sk = L 6· .. for k = 1, ... ,m. (2.1) 

For k = 0 we have 80 = 1, and 8k = 0 for k > m or k < o. 

Let dcr(x) be a given nonnegative measure on the real line IR, with compact 

or infinite support, for which all moments /Lk = flRxkdcr(x), k = 0,1, ... , exist 

and are finite, and /Lo > o. In that case, there exist a unique set of orthonormal 

polynomials 7rn (-) = 7rn (·; dcr), n = 0, 1, ... , defined by 

n,m 2: 0, 

where 

(j,g) = 1 f(x)g(x) dcr(x) (2.2) 

Also, we put 

( 

)

1/2 

1IPIIdu = V(P, P) = 1IP(x)12 dcr(x) (2.3) 

n 

We mention first that every polynomial P(x) = L avxv E Pn can be repre-

v=o 
sented in the form 

n 

P(x) = L O:v7rv(x; dcr), 
v=O 

where O:v = (P,7rv), v = 0,1, ... , n, and the inner product is given by (2.2). Then 

we have 

an-, "n-;b (da) (p, da)n n-} b 0, 1, ... , n, (2.4) 

where 7rv(-) = 7rv(·; dcr). If we suppose that P E Pn(6, ... , then we have 

m 

P(x) = Q(x) II (x - (2.5) 

k=l 

where Q(x) = + + ... + aG E Pn- m . Also, we have 

m II (x - = xm - SlXm- 1 + ... + (_l)m-l 8m-IX + (-1)m8m 
i=l 
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where Sk, k = 0,1, ... , m, denotes elementary symmetric functions (2.1). Using 
(2.5) we find that 

k 

an-k = 
i=O 

k = 0,1, ... , n, 

and = ° for k < ° and k > n - m. Now, the corresponding equalities (2.4) for 
polynomial Q in the measure diJ (x), given by 

m 

diJ(x) = IT Ix - (2.6) 
k=l 

become 

i 
I (Q '"' b'(n-m- j ) , ) 

an-m-i == 'L...J n-m-i 7rn - m -j , i = 0, 1, ... , n - m, 
j=O 

where n"v(·) = ?rvC diJ). According to (2.5), we have 

_ k-i '(n-m-j) , _ k (i ) an-k - 8(-1) Sk-i Q, {;bn - m - i ?rn-m-j - (Q, Wn - m ) (2.7) 

where 

k i 
'"'( l)k-i '"' b'(n-m- j ) , ( ) L...J - Sk-i L...J n-m-i ?rn-m-j X 

i=O j=O 

k k 
'"' ' ( ) '"'( l)k-i b'(n-m- j ) L...J ?rn-m-j X L...J - Sk-i n-m-i 
j=O i=j 

and bY") = ° for v < 0. 

Now, we can prove the following result: 

Theorem 2.1. Let P E and Sl"",Sm be given by (2.1). If the 
measure diJ(x) is given by (2.6) and IIPlldCT is defined by (2.3), then 

(2.8) 

for k = 0,1, ... , n, where bt = bt(diJ), v = 0,1, ... , /-l, are the coefficients in the 
orthonormal polynomialnl-'O = ?rl-'('; diJ). Inequality (2.8) is sharp and becomes 
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an equality if and only if P(x) is a constant multiple of the polynomial 

Proof. Using Cauchy inequality from (2.7) we get 

where 

Since 

= L IQ(x)1 2da(x) = L IP(x)1 2dO"(x) = 

we obtain inequality (2.8). The extremal polynomial is 

m 

X f---t Wn-m(x) II (x -
k=l 

o 

For k = ° and k = 1 this theorem gives the results obtained by Milovanovic 
and Guessab [5] (see also [6], pp. 432-439). In the simplest case when dO"(t) = dt 
on (-1,1), these results reduce to the Tariq's inequalities (1.4) and (1.5). 

3. Extremal problems on the radial rays 

Let PN be the set of all monic algebraic polynomials of degree Nand Es be Mth 
roots of unity, i.e., Es = exp(i27rs/M), s = 0, 1, ... , M -1. Polynomials orthogonal 
on the radial rays with respect to the inner product 

(3.1) 

have been introduced and studied recently in [3]. Here, w is a weight function and ° < a :S +00. The case a = +00 with an exponential weight gives the generalized 
Hermite polynomials on the radial rays (see [4]). 
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In this section we consider the following extremal problem 

int t (t1IP(XE8W)W(X) dx. 
PEPN 10 8=0 

(3.2) 

Theorem 3.1. Let 0 < a :::; +00. For each P E PN we have 

(3.3) 

where (JrN) are monic orthogonal polynomials with respect to the inner product 
(3.1). In (3.3) equality holds if and only if P(z) = JrN(Z). 

Proof. Let P E PN and be a sequence ofthe monic polynomials orthogonal 
with respect to the inner product (3.1), where 0 < a :::; +00. Then P(z) can be 
expressed in the form 

N 

P(z) = L CkJrk(Z), 
k=O 

where Ck = (P,Jrk)/IIJrkI12, k = 0, 1, ... ,N. Notice that CN = 1. Since 

N 

IIPI1 2 = L ICkl

2
11Jrkl1

2 ;:::: icNI211JrNI12 = IIJrNII2, 
k=O 

we obtain (3.3), with equality if and only if P(z) = JrN(Z). 
o 

Using an explicit form of the norm in a particular case when M = 4 (see [3], 
Remark 5.4) we obtain the following result: 

Corollary 3.2. Let P E PN, N = 4n + v, n = [N/4], and v E {O, 1,2, 3}. Then 

where 
2 

4 (2n-1 4(k_V+1)) 
L N = 2N + 1 ]I 4k + 2v + 1 

for N ;:::: 4, and LN = 4/(2N + 1) if N :::; 3. 
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Taking an arbitrary polynomial P of degree N, i.e., P E PN, and using 
Theorem 3.1 we can obtain an estimate for its leading coefficient aN like (1.2) or 
(1.3) without the factor nj(n + 1). 

N 
Corollary 3.3. Let 0 < a ::; +00. For each PN(z) = L akzk E P N we have 

k=O 

(3.4) 

where (7r N) are monic orthogonal polynomials with respect to the inner product 
(3.1). In (3.4) equality holds if and only if P(z) is a constant multiple of the 
polynomial 7r N (z). 

We consider now a restricted class of polynomials of degree at most N such 
that P(z) has a multiple zero of the order m in the origin z = O. Denote this 
class by PKt. Evidently, each polynomial P E PKt can be expressed in the form 
P(z) = zmQ(z), where Q E PN-m' 

Introduce the weight function x f---t wm(x) = xmw(x) on (0, a), where mEN, 
and let be the set of monic polynomials orthogonal with respect to the 
inner product (3.1) with the weight function Wm instead of w. Then Corollary 3.3 
can be interpreted in the following way: 

Corollary 3.4. Let 0 < a ::; +00 and P be an arbitrary polynomial in PKt. Then 
for its leading coefficient the following inequality 

la 1< IIPII 
N - II7rN-m,mll 

holds, with equality if and only if P(z) is a constant multiple of the polynomial 
zm7rN _m,m(z). 
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